
STM32 & USB

Roman Ludin

September 2014

Ver. 1.0

USB introduction

• Do you know what is USB?
• It’s easy, just check-out WIKI http://en.wikipedia.org/wiki/USB

• Which are your customers USB projects?

• What are the key USB requirements of your customers?

• Who are the main competitors of ST and WHY?

2

http://en.wikipedia.org/wiki/USB

the Universal Serial Bus

• The USB - Universal Serial Bus is an industry

standard developed in the mid-1990s that

defines

• Bus architecture

• Cables, Connectors, Electrical levels

• Communications protocols

3

• USB was designed to standardize the connection of computer

peripherals

• keyboards, pointing devices, digital cameras, printers, portable media players, disk

drives and network adapters

• It has become common interface on other devices, such as

smartphones, PDAs and video game consoles.

• USB has effectively replaced a variety of earlier interfaces, such as

serial and parallel ports.

the Universal Serial Bus 4

Hot pluggable YES

Protocol Serial, pooled, host centric

Bitrate 1.5/ 12/ 480/ 5,000/ 10,000

Mbit/s

Max Length 5m

Max Voltage 5V

Max Current 0.5A general

5A charging device

Max Devices 127

Pins 4

1 supply, 2 data, 1 ground

Topology Tired star

USB History

• The original USB 1.0 specification was introduced in January 1996

• Defined data transfer rates of 1.5 Mbit/s“ Low Speed" and 12 Mbit/s "Full Speed“

The first widely used version of USB was 1.1, was released in September 1998.

• The USB 2.0 specification was released in April 2000

• Develop a higher data transfer rate achieving 480 Mbit/s

• a 40-times increase over the original USB 1.1 specification

• The USB 3.0 specification was published on 12 November 2008.

• Increase the data transfer rate (up to 5 Gbit/s)

• decrease power consumption, increase power output

• backwards-compatible with USB 2.0. USB 3.0 includes a new, higher speed bus

called SuperSpeed in parallel with the USB 2.0 bus.

• The USB 3.1 specification was released on 31 July 2013

• Introducing a faster transfer mode called "SuperSpeed USB 10 Gbps"

5

www.usb.org 6

• USB Implementers Forum, Inc.

• is a non-profit corporation that developed the USB specification

• The Forum facilitates the development of high-quality

compatible USB peripherals (devices), and the quality of products

that have passed compliance testing. Some of the many

activities that the USB-IF supports include:

 USB Compliance Workshops and compliance test and tool

development

 USB Developer Conferences

 Assignment of a vendor ID

 www.usb.org Web site

 and many more...

Bus Topology

• The USB physical interconnect is a tiered star topology.

• The USB connects USB devices with the USB host.

• A hub is at the center of each star. Each wire segment is a

point-to-point connection.

• The maximum of 127 devices can be connected in the bus

• The maximum of 5 hubs can be connected in series

• The maximum number of tiers allowed is seven

• The maximum cable length is 5meter

7

Electrical

• USB is a serial bus, using four shielded wires for the USB 2.0 variant:

• two for power (VBUS and GND),

• two for differential data signals (D+ and D-).

• Non-Return-to-Zero Inverted (NRZI) encoding scheme is used for

transferring data.

8

Electrical

• The 1.5K pull-up allows the host to detect the device attachment and
its supported speed

• High-speed device is detected first as full-speed device then high-
speed capability is detected through bus handshake mechanism
called “chirp sequence”

9

Full/high Speed: Pull-up on D+ Low Speed: Pull-up on D-

Physical layer flow

• Packed is coded to NRZI with BitStaffing

• Then is send over differential bus

10

Output

Packet
BiStaffing NRZI

Output

driver

Input

driver

Reverse

NRZI

Reverse

BitStaffing

Input

Packet

USB cable

Mechanical 11

• USB specification provides the mechanical

and electrical specifications for the cables,

connectors

• The USB physical topology consists of

connecting the downstream hub port to

the upstream port of another hub or to a

device

• “keyed connector” are used to

minimize end user termination problems

Standard, Mini, and Micro USB plugs.

upstream towards

the "host" system

downstream

towards the

USB Device

USB over STM32 Family

MCU Core USB controller

STM32L0x2

STM32L0x3

Cortex-M0+ 1x Crystal less USB 2.0 FS device with Link Power

Managament (LPM) and Battery Charger detection (BCD)

STM32F0x2

STM32F0x8

Cortex-M0 1x Crystal less USB 2.0 FS device controller with Link Power

Managment (LPM) and Battery Charger detection (BCD)

STM32L1 Cortex-M3 1x USB 2.0 FS device with internal 48 MHz PLL

STM32F102/103 Cortex-M3 1x USB 2.0 FS device controller

STM32F105/107 Cortex-M3 1x USB 2.0 FS device/host/OTG controller with on-chip PHY

with 1.25 Kbytes of dedicated SRAM

STM32F2 Cortex-M3 1x USB 2.0 FS device/host/OTG controller with on-chip PHY

1x USB 2.0 FS/HS device/host/OTG controller with dedicated

DMA, on-chip full-speed PHY and ULP

STM32F3 Cortex-M4 1x USB 2.0 FS device controller and LPM

STM32F4 Cortex-M4 1x USB 2.0 FS device/host/OTG controller with on-chip PHY

1x USB 2.0 FS/HS device/host/OTG controller with dedicated

DMA, on-chip full-speed PHY and ULPI

12

STM32 on USB-IF integrators list 13

http://www.usb.org

http://www.usb.org/

USB VID/PID sublicensing service

Process & Schedule for PID request

• Request details:

1) COMPANY NAME AUTHORZING USE TO :

2) Contact Name /Address and E-mail address:

3) Name/Sales type of the STMicrocontroller product name :

4) Name of USB end-product : { if possible USB device string Product}

• PID Booked in an internal ST Database

• By end of each quarter

• ST send the approval list to the USB-IF

• Approval by USB-IF

• PID send to the customer with a “letter form Agreement”

14

USB peripheral (F0/L0)

• Crystal-less* USB 2.0 FS interface (12Mbit/s)

• Integrated on-chip 48 MHz oscillator with clock recovery system. No external resonator/ crystal

needed (cost saving is in range of 0.10$).

• Up to 16 mono-directional or 8 bidirectional configurable endpoints

• Up to 1024 Bytes of dedicated packet buffer memory SRAM

• Complies with Link Power Management feature (LPM) and Battery

Charging Detection (BCD) specification 1.2

• Device Firmware Upgrade on the field over USB (boot loader)

• USB FS Device Library with intuitive USB device class drivers API

• Examples and demo based on a set of 6 classes (Audio, CCID, CDC, HID, VCP, MSC).

• Easy development of applications using USB full speed transfer types (control, interrupt, bulk and

isochronous).

• Free PID/VID program for end-product certification

15

http://gnbproject7mms.gnb.st.com/mcdmktg/regions/stm32/STM32 Branding visuals/picto_usb.jpg
http://gnbproject7mms.gnb.st.com/mcdmktg/regions/stm32/STM32 Branding visuals/picto_usb.jpg

(USB) Clock recovery principle

• Provide the precise USB clock (48Mhz @ 0.25%) without any external

resonator. It uses the USB Start-of-Frame (SOF) sent by a host at

precise 1ms intervals (0.05% accurate), as a timing reference.

• SOF timing reference allows to automatically trim the int 48 MHz RC

frequency based on the actual frequency error measured by a counter.

• HSI48 oscillator trimming step is 0.14% typical (0.2% max) to

guarantee with a good margin the 0.25% accuracy needed for USB.

• Other synchronization sources (LSE, ext pin or SW trigger) works too.

Note : to calcul the precision of the output, +/-0.1% of error must be added on top of the

reference signal precision. Ex : to reach 0.5% output, you need to have at worst 0.4%

reference input.

16

USB with Cube

T.O.M.A.S – Technically Oriented Microcontroller Application Services

v0.01

USB HS

• STM32 for USB HS require the external PHY

• We recommend USB3300 which is tested with our devices and is also

present on all our eval boards

• If the customer want to use different phy we recommend to test this

new phy with STM32

32

USB Protections

• STM32 FS USB connection

• Is not recommend use on DP and DN lines only 22ohm resistors

• Maximum allowed resistance is 5ohm with ESD protection

• Use ESD protections without internal resistors

• Otherwise you may not pass the validation

• The STM32 can work without external resistors

on DP, DN lines it no specific ESD requirements

is need than also without ESD protection

33

The 22ohm are in parallel with 33ohm

but impedance is still too high (it is only

workaround)

Use ESD protections

without internal resistors

USB Library options

• Connection supported by our library

• Not supported configuration in ST USB library

•

• Because ST USB HOST library not support HUB Class

34

STM32

Host
Device

Host/HUB
STM32

Device

STM32

Host
HUB

USB VCP Device with CubeMX

Cube VCP Functionality

• CDC FLOW 1/2

• Endpoint 0 by default

• Endpoint 1 bulk in

• Endpoint 2 bulk out

• Endpoint 3 Interrupt in(for control purposes)

44

Host STM32

DeviceCable connect

Host STM32

Device
Enumeration

Host STM32

Device
USBD_CDC_Receive

Packet

IN

STM32

Device
CDC_Transmit_HS

EP1

Cube VCP Functionality 45

Host STM32

DeviceOUTEP2 EP2

Host STM32

Device
CDC_Receive_HS

Host STM32

Device
EP1 EP1Packet

Host

Packet

Packet

Packet

• CDC FLOW 2/2

USB VCP Device

L0 crystall less

USB L0 VCP Device

• Create project in CubeMX

• Menu > File > New Project

• Select STM32L0 > STM32L0x3 > LQFP64 > STM32L053R8Tx

• Select USB Device (FS)

• Select RCC CRS SYNC to CRS SYNC Source USB

• Because for crystal less device we need clock synchronization

• Select CDC class in MiddleWares

47

USB L0 VCP Device

• Configure RCC clocks

• USBCLK source is RC48MHz

• Clock core to 32MHz from HIS PLL mul is 4x and divider 2x

• AHB/APB1/APB2 prescalers set to 1x

48

USB L0 VCP Device

• Now we set the project details for generation

• Menu > Project > Project Settings

• Set the project name

• Project location

• Type of toolchain

• Now we can Generate Code

• Menu > Project > Generate Code

49

USB VCP Device

F429 - Discovery

USB F4 VCP Device

• Create project in CubeMX

• Menu > File > New Project

• Select STM32F4 > STM32F429/439 > LQFP144 > STM32F439ZITx

• Select USB HS OTG internal PHY(FS)

• Select HSE clock

• (HSI cannot be used and STM32F4 have no clock synchronization)

• Select CDC class in MiddleWares

51

USB F4 VCP Device

• Configure RCC clocks

• For discovery kit set crystal frequency to 8MHz and M divider to 8x (1MHz)

• PLL set to N multiplier to 336x and P divider to 2x(168MHz 180 is not possible) and Q divider to

7x(48MHz)

• AHB prescaler to 1x, APB1 to 4x(42MHz) and APB2 to 2x(84MHz)

52

USB F4 VCP Device

• Now we set the project details for generation

• Menu > Project > Project Settings

• Set the project name

• Project location

• Type of toolchain

• Now we can Generate Code

• Menu > Project > Generate Code

53

USB VCP Device

• CubeMX will generate for you whole project

• For Keil is necessary in startup_stm32xxxx.s increase heap otherwise USB

will be not functional(0x200 heap is to low for USB)

• Change it to:

• Then USB device will be successful enumerated

54

; <h> Heap Configuration

; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>

; </h>

Heap_Size EQU 0x00000200

; <h> Heap Configuration

; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>

; </h>

Heap_Size EQU 0x00000800

USB VCP Device

• How send receive data over VCP

• Function which handle VCP operation are in generated file usbd_cdc_if.c

• APP_RX_DATA_SIZE and APP_TX_DATA_SIZE define size of sending and

receiving buffers

• Callback from control interface which allow to send COM port parameters

Is used only if you really want to send data over COM port(UART)

55

/* USER CODE BEGIN 1 */
/* Define size for the receive and transmit buffer over CDC */
/* It's up to user to redefine and/or remove those define */
#define APP_RX_DATA_SIZE 64
#define APP_TX_DATA_SIZE 64

/* USER CODE END 1 */

static int8_t CDC_Control_FS (uint8_t cmd, uint8_t* pbuf, uint16_t length)

USB VCP Device

• Receive callback function

• In case you wand to receive more bytes you must call

USBD_CDC_ReceivePacket(hUsbDevice_0);

• Otherwise the USB will not accept any data until you call this function

56

static int8_t CDC_Receive_FS (uint8_t* Buf, uint32_t *Len)
{

/* USER CODE BEGIN 7 */
USBD_CDC_ReceivePacket(hUsbDevice_0);
return (USBD_OK);
/* USER CODE END 7 */

}

USB VCP Device

• The Windows terminals using CDC commands to set correct line coding

• But they also want to read this coding back

• For this purpose we need to handle this actions

• This actions are done throe function:

• We use simply trick, we create buffer where we store this information from PC

and the we can send them back

57

static int8_t CDC_Control_FS (uint8_t cmd, uint8_t* pbuf, uint16_t length)

uint8_t tempbuf[6];
/* USER CODE END 3 */

USB VCP Device

• This part in CDC_Control_FS handling the storing and riding part form buffer

• Now will be communication with PC functional

58

case CDC_SET_LINE_CODING:
tempbuf[0]=pbuf[0];
tempbuf[1]=pbuf[1];
tempbuf[2]=pbuf[2];
tempbuf[3]=pbuf[3];
tempbuf[4]=pbuf[4];
tempbuf[5]=pbuf[5];
tempbuf[6]=pbuf[6];

break;

case CDC_GET_LINE_CODING:
pbuf[0]=tempbuf[0];
pbuf[1]=tempbuf[1];
pbuf[2]=tempbuf[2];
pbuf[3]=tempbuf[3];
pbuf[4]=tempbuf[4];
pbuf[5]=tempbuf[5];
pbuf[6]=tempbuf[6];

break;

USB VCP Device

• This function you need to call if you want to send data over VCP

• In CubeMX 4.6 wrong USBD_CDC_SetTxBuffer Buffer parameter, please

correct it as bellow

59

uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len)
{

uint8_t result = USBD_OK;
/* USER CODE BEGIN 8 */
USBD_CDC_SetTxBuffer(hUsbDevice_0, Buf, Len);
result = USBD_CDC_TransmitPacket(hUsbDevice_0);
/* USER CODE END 8 */
return result;

}

uint8_t CDC_Transmit_HS(uint8_t* Buf, uint16_t Len)
{

uint8_t result = USBD_OK;
/* USER CODE BEGIN 13 */
USBD_CDC_SetTxBuffer(hUsbDevice_1, UserTxBufferHS, Len);
result = USBD_CDC_TransmitPacket(hUsbDevice_1);
/* USER CODE END 13 */
return result;

}

Example of wrong

generated code

Irelevant buffer change it to

‘Buf’ or store your data into this

buffer

USB VCP Device

• If you want send lot of data with function CDC_Transmit_FS and you want to

rewrite his buffer you must check first if the periphery release this buffer

• For this you need check the state of CDCUSBhandle something like this

• The function first check if USB IN(Tx) is complete and allow to use transmit

function

• Correct handling of transmit complete is use USBD_CDC_DataIn callback in

usbd_cdc.c and implement callback to user application

Unfortunately for this is necessary change library files!!

60

if(((USBD_CDC_HandleTypeDef*)(hUsbDeviceFS.pClassData))->TxState==0){
CDC_Transmit_FS(buffer,length);

}

USB VCP Device

• Because Windows can select for VCP very high com port number you need

the terminal where you can select the com number

• For example: http://realterm.sourceforge.net/

• If the USB is connected to PC it must be displayed in Device Manager

• In case you have no driver for VCP download it from:

http://www.st.com/web/en/catalog/tools/FM147/CL1794/SC961/SS1533/PF25

7938?s_searchtype=keyword

61

VCP with assigned port number

http://realterm.sourceforge.net/
http://www.st.com/web/en/catalog/tools/FM147/CL1794/SC961/SS1533/PF257938?s_searchtype=keyword

USB VCP Device

• Simple Loopback only for testing!!!

62

static int8_t CDC_Receive_FS (uint8_t* Buf, uint32_t *Len)
{

/* USER CODE BEGIN 7 */
CDC_Transmit_FS(Buf,*Len);
USBD_CDC_ReceivePacket(hUsbDevice_0);
return (USBD_OK);
/* USER CODE END 7 */

}

uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len)
{

uint8_t result = USBD_OK;
/* USER CODE BEGIN 8 */
USBD_CDC_SetTxBuffer(hUsbDevice_0, Buf, Len);
result = USBD_CDC_TransmitPacket(hUsbDevice_0);
/* USER CODE END 8 */
return result;

}

USB VCP Device

• Transmit will be still same

63

uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len)
{

uint8_t result = USBD_OK;
/* USER CODE BEGIN 8 */
USBD_CDC_SetTxBuffer(hUsbDevice_0, Buf, Len);
result = USBD_CDC_TransmitPacket(hUsbDevice_0);
/* USER CODE END 8 */
return result;

}

VCP Zero Length Packet

• Communication over VCP with Windows is specific

• There is one problematic part which is not obvious

• The Windows require for end of in transfer packet smaller then maximum size

or zero length packet

• If this condition is not meet you will never see data in your

application!!!!

64

Windows use in VCP this

condition as end of transfer

USB specification 2.0

Chapter 5.8.3

VCP Zero Length Packet lab

• In CubeMX add PA0(Button) pin as input

• It will help with problem demonstration and protect terminal from

spamming

• And regenerate code

65

VCP Zero Length Packet lab

• Corrected transmit function(usbf_cdc_if.c)

• We don’t need to do anything with receive

66

uint8_t CDC_Transmit_HS(uint8_t* Buf, uint16_t Len)
{

uint8_t result = USBD_OK;
/* USER CODE BEGIN 13 */
USBD_CDC_SetTxBuffer(hUsbDevice_1, Buf, Len);
result = USBD_CDC_TransmitPacket(hUsbDevice_1);
/* USER CODE END 13 */
return result;

}

static int8_t CDC_Receive_HS (uint8_t* Buf, uint32_t *Len)
{

/* USER CODE BEGIN 12 */
return (USBD_OK);
/* USER CODE END 12 */

}

VCP Zero Length Packet lab

• Include the usbd_cdc_if.h into main.c this allow us to use Transmit

function

• Create buffer and buffer length variable and variable for loop limiting

purpose, define extern USB handle(only for OTG devices)

67

/* USER CODE BEGIN Includes */
#include "usbd_cdc_if.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PFP */
uint8_t buffer[64];
uint8_t length=64;
uint8_t count=0;
extern USBD_HandleTypeDef hUsbDeviceHS;
/* USER CODE END PFP */

VCP Zero Length Packet lab

• We will wait on PA0 button press

• After that program sent 5x buffer 64byte length

• But on windows terminal we not get any data

• Try to decrease length variable to for example to 63

68

/* USER CODE BEGIN 2 */
while(HAL_GPIO_ReadPin(GPIOA,GPIO_PIN_0)==GPIO_PIN_RESET){
}
while(count<5){

if(((USBD_CDC_HandleTypeDef*)(hUsbDeviceHS.pClassData))->TxState==0){
if(CDC_Transmit_HS(buffer,length)==USBD_OK){

count++;
}

}
}
/* USER CODE END 2 */

Check if is possible sent

dataData Send with

value check

PA0 button press

check

VCP Zero Length Packet lab

• Same situation as on previous slide but now we send zero length

packet on the end (length is 64)

• Now windows terminal will receive data

69

/* USER CODE BEGIN 2 */
while(HAL_GPIO_ReadPin(GPIOA,GPIO_PIN_0)==GPIO_PIN_RESET){
}
while(count<5){

if(((USBD_CDC_HandleTypeDef*)(hUsbDeviceHS.pClassData))->TxState==0){
if(CDC_Transmit_HS(buffer,length)==USBD_OK){

count++;
}

}
}
while(((USBD_CDC_HandleTypeDef*)(hUsbDeviceHS.pClassData))->TxState!=0)
{
}
CDC_Transmit_HS(buffer,0);
/* USER CODE END 2 */

Check if is possible send

data and ZLP send

USB VCP Host

USB F4 VCP Host

• The CubeMX CDC host is very easy to handle

• There inly few function to handle

• Most important thing is function USBH_Process which must be periodically

called

• This function us periodically called from main.c in projects generated by

CubeMX

• For sending data over CDC we use function USBH_CDC_Transmit

• And for reading data from device USBH_CDC_Receive

• USBH_CDC_TransmitCallback is weak call-back called when data was

succesfouly transferred

• USBH_CDC_ReceiveCallback is called when data was received

71

IN

Device
EP1

Cube VCP HOST Functionality 72

STM32

Host

Device
OUTEP2 EP2

STM32

Host

Device

USBH_CDC_

Transmit

STM32

Host

Device
EP1 EP1Packet

STM32

Host Packet

• CDC HOST FLOW

STM32

Host

Device

EP2

USBH_CDC_Transit

Callback

EP1

Packet

Packet

Packet

USBH_CDC_

Receive

USBH_CDC_Receive

Callback

USB F4 VCP Host lab

• Create project in CubeMX

• Menu > File > New Project

• Select STM32F4 > STM32F429/439 > LQFP144 > STM32F439ZITx

• Select USB HS OTG internal PHY(FS)

• Select HSE clock

• (HSI cannot be used and STM32F4 have no clock synchronization)

• Select CDC class in MiddleWares

73

USB F4 VCP Host lab

• Because HOST must also power the device we need to enable voltage

regulator connected to VBUS line

• Regulator enable pin is on PC4(only select as output is enough because

default state then will be LOW)

74

Connected to PC4

USB F4 VCP Host lab

• We also enable PA0 where is button only for demo purpose

• USB clock set to 48MHz and core clock at maximum

75

USB F4 VCP Host lab

• In Configuration tab select USB_HS in Connectivity

• Disable option use internal DMA

• Button OK

76

USB F4 VCP Device

• Now we set the project details for generation

• Menu > Project > Project Settings

• Set the project name

• Project location

• Type of toolchain

• Now we can Generate Code

• Menu > Project > Generate Code

• If you have KEIL change

HEAP size in startup file

77

USB F4 VCP Host lab

• In main.c is additional function MX_USB_HOST_Process this function must

be periodically called, if not USB Host will be not functional

• CubeMX generate is in infinite loop put I recommend you to handle it by

interrupt or in RTOS put it into task

78

/* USER CODE BEGIN 3 */
/* Infinite loop */
while (1)
{

MX_USB_HOST_Process();
}
/* USER CODE END 3 */

USB F4 VCP Host lab

• In usb_host.c you may find callbacks from CDC

• USBH_UserProcess callback storing state of connected device into

Appli_state variable

• If the Device is connected and enumerated into Appli_state is stored

APPLICATION_READY and we can commutate with device

79

/*
* user callbak definition
*/
static void USBH_UserProcess (USBH_HandleTypeDef *phost, uint8_t id)
{

/* USER CODE BEGIN 2 */
switch(id)
{
case HOST_USER_SELECT_CONFIGURATION:
break;
case HOST_USER_DISCONNECTION:
Appli_state = APPLICATION_DISCONNECT;
break;
case HOST_USER_CLASS_ACTIVE:
Appli_state = APPLICATION_READY;
break;
case HOST_USER_CONNECTION:
Appli_state = APPLICATION_START;
break;
default:
break;
}
/* USER CODE END 2 */

}

Device not connected

Device can communicate

USB F4 VCP Host lab

• In usb_host.c we define buffers for sending data and receiving

• In user section we define function which will send data into CDC device after

button press

80

/* USER CODE BEGIN 0 */
uint8_t rx_buffer[100];
uint8_t tx_buffer[]="Hello\n";
/* USER CODE END 0 */

/* USER CODE BEGIN 1 */
void userFunction(void);
void userFunction(void){

if(Appli_state==APPLICATION_READY){
if(HAL_GPIO_ReadPin(GPIOA,GPIO_PIN_0)==GPIO_PIN_SET){

USBH_CDC_Transmit(&hUsbHostHS,tx_buffer,0x9);
}

}
}

Check if we can communicate with

device

Send data to host if the button is pressed

We send tx_buffer long 9bytes

USB F4 VCP Host lab

• In usb_host.c we also define two callbacks

• USBH_CDC_TransmitCallback which is called when data was successfully

transmitted

• USBH_CDC_ReceiveCallback called if data was received

81

void USBH_CDC_TransmitCallback(USBH_HandleTypeDef *phost){
USBH_CDC_Receive(phost,rx_buffer,0x9);

}

void USBH_CDC_ReceiveCallback(USBH_HandleTypeDef *phost){
printf(rx_buffer);

}
/* USER CODE END 1 */

After data was transmitted to CD device we

Request reading from CDC device

When data was read from device we print

them to terminal(SWO)

/*
* Background task
*/
void MX_USB_HOST_Process()
{

/* USB Host Background task */
USBH_Process(&hUsbHostHS);
userFunction();

}

USB F4 VCP Host lab

• Now only thing what is missing is call userFunction which will send data after

button press

• I put it into MX_USB_HOST_Process is not ideal because CubeMX can

regenerate it but for demonstration purpose it is inapt

82

USB MSP Host lab

USB MSP Host lab

• Create project in CubeMX

• Menu > File > New Project

• Select STM32F4 > STM32F429/439 > LQFP144 > STM32F439ZITx

• Select USB HS OTG internal PHY(FS)

• Select HSE clock

• (HSI cannot be used and STM32F4 have

no clock synchronization)

• Select MSP class in MiddleWares

and FATFS USB Disk

84

USB MSP Host lab

• Because HOST must also power the device we need to enable voltage

regulator connected to VBUS line

• Regulator enable pin is on PC4(only select as output is enough because

default state then will be LOW)

85

Connected to PC4

USB MSP Host lab

• We also enable PA0 where is button only for demo purpose

• USB clock set to 48MHz and core clock at maximum

86

USB MSP Host lab

• In Configuration tab select USB_HS in Connectivity

• Disable option use internal DMA

• Button OK

87

USB MSP Host lab

• Now we set the project details for generation

• Menu > Project > Project Settings

• Set the project name

• Project location

• Type of toolchain

• Now we can Generate Code

• Menu > Project > Generate Code

• If you have KEIL change

HEAP size in startup file

88

USB MSP Host lab

• If the Device is connected and enumerated into appli_state is stored

APPLICATION_READY and we can commutate with device

• For this reason we import into main.c appli_state variable

• We also need FATFS variable and FIL for file operations

•

• Other variable are for lab purposes

89

extern ApplicationTypeDef Appli_state;

/* USER CODE BEGIN PV */
extern ApplicationTypeDef Appli_state;
FIL fp; //file handle
FATFS fatfs; //structure with file system information
char text[]="test";//text which will be written into file
char name[]="test.txt";//name of the file
char text2[100];//buffer for data read from file
uint32_t ret;//return variable
/* USER CODE END PV */

USB MSP Host lab

• First we need mount the USB flash disk.

• Please note that FLASH disk must be formatted in FAT32 file system

otherwise is not possible to mount it

90

/* USER CODE BEGIN 3 */
/* Initialises the File System*/
if (f_mount(&fatfs,"" ,0) != FR_OK)

{
/* fs initialisation fails*/
while(1);

}

USB MSP Host lab

• Basic operation with file system, reading and writing data from file “text.txt”

91

/* Infinite loop */
while (1)
{
MX_USB_HOST_Process();
if(Appli_state==APPLICATION_READY){
/*open or create file for writing*/
if(f_open(&fp,name,FA_CREATE_ALWAYS | FA_WRITE)!=FR_OK){
while(1);

}
/*write data into flashdisk*/
if(f_write(&fp,text,strlen(text),&ret)!=FR_OK){
while(1);

}
f_close(&fp);
/*open file for reading*/
if(f_open(&fp,name,FA_READ)!=FR_OK){
while(1);

}
/*red data from flash*/
if(f_read(&fp,text2,100,&ret)!=FR_OK){
while(1);

}
f_close(&fp);

}
}
/* USER CODE END 3 */

USB MSP Host lab

• From the past we know that some flash sticks can have problems with out

library(STD)

• The USB MSP library is now only interface between flash drive and file

system

• The basic operation which are done with MSP USB part is calling two BULK

transfer one for READ BLOCK and second WRITE BLOCK

92

USB HID Device lab

Interrupt IN

STM32

Device
USBD_HID_Send

Report

EP1

USB HID Device lab 94

Host STM32

Device
EP1 EP1Packet

Host

Packet

• HID device communicate over interrupt endpoint which guarantee the

delivery in finite time

• In our CubeMX library is implemented the mouse report descriptor

• For change it you need to modify report descriptor first

USB HID Device lab

• Create project in CubeMX

• Menu > File > New Project

• Select STM32F4 > STM32F429/439 > LQFP144 > STM32F439ZITx

• Select USB HS OTG internal PHY(FS)

• Select HSE clock

• (HSI cannot be used and STM32F4 have no clock synchronization)

• Select HID class in MiddleWares

95

USB HID Device lab

• We also enable PA0 where is button only for demo purpose

• USB clock set to 48MHz and core clock at maximum

96

USB HID Device lab

• In Configuration tab select USB_HS in Connectivity

• Disable option use internal DMA

• Button OK

97

USB HID Device lab

• Now we set the project details for generation

• Menu > Project > Project Settings

• Set the project name

• Project location

• Type of toolchain

• Now we can Generate Code

• Menu > Project > Generate Code

• If you have KEIL change

HEAP size in startup file

98

USB HID Device lab

• The message which the HID device send have format defined in REPORT

descriptor

• This format have only basic rules but descriptor for one device can look very

different but functionality will be same

• Handling and parsing descriptors is on host

• Descriptor generated by CubeMX PC expects in this format:

• If you want to change format of this message you need to change the

REPORT DESCRIPTOR in file usbd_hid.c the report descriptor array is called

HID_MOUSE_ReportDesc

99

[7..3]Empty
[2..0]

Buttons

[7..0]

X axis (signed)

[7..0]

Y axis (signed)

[7..0]

Wheel (signed)

USB HID Device lab

• We will work only in main.c

• First include the USB handle

• And include hid header file

• Define buffer which will be send to the host

100

/* USER CODE BEGIN PV */
extern USBD_HandleTypeDef hUsbDeviceHS;
/* USER CODE END PV */

/* USER CODE BEGIN Includes */
#include "usbd_hid.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PFP */
uint8_t buffer[4];
/* USER CODE END PFP */

USB HID Device lab

• USBD_HID_SendReport will send the buffer on button press

• The buffer variable contains data about the mouse move and state of buttons

• With settings bellow, every button press move with cursor

101

/* USER CODE BEGIN 2 */
buffer[0]=0;//buttons first 3 bits
buffer[1]=100;//X axis 8bit value signed
buffer[2]=0;//Y axis 8bit value signed
buffer[3]=0;//Wheel 8bit value signed
/* USER CODE END 2 */

/* USER CODE BEGIN 3 */
/* Infinite loop */
while (1)
{

if(HAL_GPIO_ReadPin(GPIOA,GPIO_PIN_0)==GPIO_PIN_SET){
USBD_HID_SendReport(&hUsbDeviceHS,buffer,4);
HAL_Delay(100);

}
}
/* USER CODE END 3 */

Change to HID Keyboard Lab

• In CubeMX change PID to 22316

• And regenerate code

102

Change to HID Keyboard Lab

• In usbd_hid.h

• Change size of report descriptor to 187

• In usbd_hid.c change the protocol interface to keyboard

103

#define HID_MOUSE_REPORT_DESC_SIZE 187

/************** Descriptor of Joystick Mouse interface ****************/
/* 09 */
0x09, /*bLength: Interface Descriptor size*/
USB_DESC_TYPE_INTERFACE,/*bDescriptorType: Interface descriptor type*/
0x00, /*bInterfaceNumber: Number of Interface*/
0x00, /*bAlternateSetting: Alternate setting*/
0x01, /*bNumEndpoints*/
0x03, /*bInterfaceClass: HID*/
0x01, /*bInterfaceSubClass : 1=BOOT, 0=no boot*/
0x01, /*nInterfaceProtocol : 0=none, 1=keyboard, 2=mouse*/
0, /*iInterface: Index of string descriptor*/
/******************** Descriptor of Joystick Mouse HID ********************/

Change to HID Keyboard Lab

• Change report descriptor to(1):

104

__ALIGN_BEGIN static uint8_t HID_MOUSE_ReportDesc[HID_MOUSE_REPORT_DESC_SIZE] __ALIGN_END =
{

0x05 ,//bSize: 0x01, bType: Global, bTag: Usage Page
0x01 ,//Usage Page(Generic Desktop Controls)
0x09 ,//bSize: 0x01, bType: Local, bTag: Usage
0x06 ,//Usage(Keyboard)
0xA1 ,//bSize: 0x01, bType: Main, bTag: Collection
0x01 ,//Collection(Application)
0x85 ,//bSize: 0x01, bType: Global, bTag: Report ID
0x01 ,//Report ID(0x1)
0x05 ,//bSize: 0x01, bType: Global, bTag: Usage Page
0x07 ,//Usage Page(Keyboard/Keypad)
0x19 ,//bSize: 0x01, bType: Local, bTag: Usage Minimum
0xE0 ,//Usage Minimum(0xE0)
0x29 ,//bSize: 0x01, bType: Local, bTag: Usage Maximum
0xE7 ,//Usage Maximum(0xE7)
0x15 ,//bSize: 0x01, bType: Global, bTag: Logical Minimum
0x00 ,//Logical Minimum(0x0)
0x25 ,//bSize: 0x01, bType: Global, bTag: Logical Maximum
0x01 ,//Logical Maximum(0x1)
0x75 ,//bSize: 0x01, bType: Global, bTag: Report Size
0x01 ,//Report Size(0x1)

Change to HID Keyboard Lab

• Change report descriptor to(2):

105

0x95 ,//bSize: 0x01, bType: Global, bTag: Report Count
0x08 ,//Report Count(0x8)
0x81 ,//bSize: 0x01, bType: Main, bTag: Input
0x02 ,//Input(Data, Variable, Absolute, No Wrap, Linear, Preferred State, No Null Position, Bit Field)
0x75 ,//bSize: 0x01, bType: Global, bTag: Report Size
0x08 ,//Report Size(0x8)
0x95 ,//bSize: 0x01, bType: Global, bTag: Report Count
0x01 ,//Report Count(0x1)
0x81 ,//bSize: 0x01, bType: Main, bTag: Input
0x01 ,//Input(Constant, Array, Absolute, No Wrap, Linear, Preferred State, No Null Position, Bit Field)
0x05 ,//bSize: 0x01, bType: Global, bTag: Usage Page
0x07 ,//Usage Page(Keyboard/Keypad)
0x19 ,//bSize: 0x01, bType: Local, bTag: Usage Minimum
0x00 ,//Usage Minimum(0x0)
0x29 ,//bSize: 0x01, bType: Local, bTag: Usage Maximum
0x65 ,//Usage Maximum(0x65)
0x15 ,//bSize: 0x01, bType: Global, bTag: Logical Minimum
0x00 ,//Logical Minimum(0x0)
0x25 ,//bSize: 0x01, bType: Global, bTag: Logical Maximum
0x65 ,//Logical Maximum(0x65)
0x75 ,//bSize: 0x01, bType: Global, bTag: Report Size

Change to HID Keyboard Lab

• Change report descriptor to(3):

106

0x08 ,//Report Size(0x8)
0x95 ,//bSize: 0x01, bType: Global, bTag: Report Count
0x05 ,//Report Count(0x5)
0x81 ,//bSize: 0x01, bType: Main, bTag: Input
0x00 ,//Input(Data, Array, Absolute, No Wrap, Linear, Preferred State, No Null Position, Bit Field)
0xC0 ,//bSize: 0x00, bType: Main, bTag: End Collection
0x05 ,//bSize: 0x01, bType: Global, bTag: Usage Page
0x0C ,//Usage Page(Consumer)
0x09 ,//bSize: 0x01, bType: Local, bTag: Usage
0x01 ,//Usage(Consumer Control)
0xA1 ,//bSize: 0x01, bType: Main, bTag: Collection
0x01 ,//Collection(Application)
0x85 ,//bSize: 0x01, bType: Global, bTag: Report ID
0x02 ,//Report ID(0x2)
0x19 ,//bSize: 0x01, bType: Local, bTag: Usage Minimum
0x00 ,//Usage Minimum(0x0)
0x2A ,//bSize: 0x02, bType: Local, bTag: Usage Maximum
0x3C,
0x02,//3C ,//Usage Maximum(0x23C)
0x15 ,//bSize: 0x01, bType: Global, bTag: Logical Minimum
0x00 ,//Logical Minimum(0x0)
0x26 ,//bSize: 0x02, bType: Global, bTag: Logical Maximum

Change to HID Keyboard Lab

• Change report descriptor to(4):

107

0x3C,
0x02,//3C ,//Logical Maximum(0x23C)
0x95 ,//bSize: 0x01, bType: Global, bTag: Report Count
0x01 ,//Report Count(0x1)
0x75 ,//bSize: 0x01, bType: Global, bTag: Report Size
0x10 ,//Report Size(0x10)
0x81 ,//bSize: 0x01, bType: Main, bTag: Input
0x00 ,//Input(Data, Array, Absolute, No Wrap, Linear, Preferred State, No Null Position, Bit Field)
0xC0 ,//bSize: 0x00, bType: Main, bTag: End Collection
0x05 ,//bSize: 0x01, bType: Global, bTag: Usage Page
0x01 ,//Usage Page(Generic Desktop Controls)
0x09 ,//bSize: 0x01, bType: Local, bTag: Usage
0x80 ,//Usage(System Control)
0xA1 ,//bSize: 0x01, bType: Main, bTag: Collection
0x01 ,//Collection(Application)
0x85 ,//bSize: 0x01, bType: Global, bTag: Report ID
0x03 ,//Report ID(0x3)
0x19 ,//bSize: 0x01, bType: Local, bTag: Usage Minimum
0x81 ,//Usage Minimum(0x81)
0x29 ,//bSize: 0x01, bType: Local, bTag: Usage Maximum
0x83 ,//Usage Maximum(0x83)
0x15 ,//bSize: 0x01, bType: Global, bTag: Logical Minimum

Change to HID Keyboard Lab

• Change report descriptor to(5):

108

0x00 ,//Logical Minimum(0x0)
0x25 ,//bSize: 0x01, bType: Global, bTag: Logical Maximum
0x01 ,//Logical Maximum(0x1)
0x75 ,//bSize: 0x01, bType: Global, bTag: Report Size
0x01 ,//Report Size(0x1)
0x95 ,//bSize: 0x01, bType: Global, bTag: Report Count
0x03 ,//Report Count(0x3)
0x81 ,//bSize: 0x01, bType: Main, bTag: Input
0x02 ,//Input(Data, Variable, Absolute, No Wrap, Linear, Preferred State, No Null Position, Bit Field)
0x95 ,//bSize: 0x01, bType: Global, bTag: Report Count
0x05 ,//Report Count(0x5)
0x81 ,//bSize: 0x01, bType: Main, bTag: Input
0x01 ,//Input(Constant, Array, Absolute, No Wrap, Linear, Preferred State, No Null Position, Bit Field)
0xC0 ,//bSize: 0x00, bType: Main, bTag: End Collection
0x06 ,//bSize: 0x02, bType: Global, bTag: Usage Page
0x01,
0xFF, //01 ,//Usage Page(Undefined)
0x09 ,//bSize: 0x01, bType: Local, bTag: Usage
0x01 ,//Usage(1)
0xA1 ,//bSize: 0x01, bType: Main, bTag: Collection
0x01 ,//Collection(Application)

Change to HID Keyboard Lab

• Change report descriptor to(6):

109

0x85 ,//bSize: 0x01, bType: Global, bTag: Report ID
0x04 ,//Report ID(0x4)
0x95 ,//bSize: 0x01, bType: Global, bTag: Report Count
0x01 ,//Report Count(0x1)
0x75 ,//bSize: 0x01, bType: Global, bTag: Report Size
0x08 ,//Report Size(0x8)
0x15 ,//bSize: 0x01, bType: Global, bTag: Logical Minimum
0x01 ,//Logical Minimum(0x1)
0x25 ,//bSize: 0x01, bType: Global, bTag: Logical Maximum
0x0A ,//Logical Maximum(0xA)
0x09 ,//bSize: 0x01, bType: Local, bTag: Usage
0x20 ,//Usage(32)
0xB1 ,//bSize: 0x01, bType: Main, bTag: Feature
0x03 ,//Feature(Constant, Variable, Absolute, No Wrap, Linear, Preferred State, No Null Position, Non

VolatileBit Field)
0x09 ,//bSize: 0x01, bType: Local, bTag: Usage
0x23 ,//Usage(35)
0xB1 ,//bSize: 0x01, bType: Main, bTag: Feature
0x03 ,//Feature(Constant, Variable, Absolute, No Wrap, Linear, Preferred State, No Null Position, Non

VolatileBit Field)
0x25 ,//bSize: 0x01, bType: Global, bTag: Logical Maximum
0x4F ,//Logical Maximum(0x4F)
0x09 ,//bSize: 0x01, bType: Local, bTag: Usage

Change to HID Keyboard Lab

• Change report descriptor to(7):

110

0x21 ,//Usage(33)
0xB1 ,//bSize: 0x01, bType: Main, bTag: Feature
0x03 ,//Feature(Constant, Variable, Absolute, No Wrap, Linear, Preferred State, No Null Position, Non

VolatileBit Field)
0x25 ,//bSize: 0x01, bType: Global, bTag: Logical Maximum
0x30 ,//Logical Maximum(0x30)
0x09 ,//bSize: 0x01, bType: Local, bTag: Usage
0x22 ,//Usage(34)
0xB1 ,//bSize: 0x01, bType: Main, bTag: Feature
0x03 ,//Feature(Constant, Variable, Absolute, No Wrap, Linear, Preferred State, No Null Position, Non

VolatileBit Field)
0x95 ,//bSize: 0x01, bType: Global, bTag: Report Count
0x03 ,//Report Count(0x3)
0x09 ,//bSize: 0x01, bType: Local, bTag: Usage
0x24 ,//Usage(36)
0xB1 ,//bSize: 0x01, bType: Main, bTag: Feature
0x03 ,//Feature(Constant, Variable, Absolute, No Wrap, Linear, Preferred State, No Null Position, Non

VolatileBit Field)
0xC0 ,//bSize: 0x00, bType: Main, bTag: End Collection
0x06 ,//bSize: 0x02, bType: Global, bTag: Usage Page
0x01,
0xFF,//01 ,//Usage Page(Undefined)
0x09 ,//bSize: 0x01, bType: Local, bTag: Usage

Change to HID Keyboard Lab

• Change report descriptor to(8):

111

0x01 ,//Usage(1)
0xA1 ,//bSize: 0x01, bType: Main, bTag: Collection
0x01 ,//Collection(Application)
0x85 ,//bSize: 0x01, bType: Global, bTag: Report ID
0x05 ,//Report ID(0x5)
0x95 ,//bSize: 0x01, bType: Global, bTag: Report Count
0x01 ,//Report Count(0x1)
0x75 ,//bSize: 0x01, bType: Global, bTag: Report Size
0x08 ,//Report Size(0x8)
0x15 ,//bSize: 0x01, bType: Global, bTag: Logical Minimum
0x01 ,//Logical Minimum(0x1)
0x25 ,//bSize: 0x01, bType: Global, bTag: Logical Maximum
0x0A ,//Logical Maximum(0xA)
0x09 ,//bSize: 0x01, bType: Local, bTag: Usage
0x20 ,//Usage(32)
0xB1 ,//bSize: 0x01, bType: Main, bTag: Feature
0x03 ,//Feature(Constant, Variable, Absolute, No Wrap, Linear, Preferred State, No Null Position, Non

VolatileBit Field)
0x09 ,//bSize: 0x01, bType: Local, bTag: Usage
0x23 ,//Usage(35)
0xB1 ,//bSize: 0x01, bType: Main, bTag: Feature
0x03 ,//Feature(Constant, Variable, Absolute, No Wrap, Linear, Preferred State, No Null Position, Non

VolatileBit Field)

Change to HID Keyboard Lab

• Change report descriptor to(9):

112

0x25 ,//bSize: 0x01, bType: Global, bTag: Logical Maximum
0x4F ,//Logical Maximum(0x4F)
0x09 ,//bSize: 0x01, bType: Local, bTag: Usage
0x21 ,//Usage(33)
0xB1 ,//bSize: 0x01, bType: Main, bTag: Feature
0x03 ,//Feature(Constant, Variable, Absolute, No Wrap, Linear, Preferred State, No Null Position, Non

VolatileBit Field)
0x25 ,//bSize: 0x01, bType: Global, bTag: Logical Maximum
0x30 ,//Logical Maximum(0x30)
0x09 ,//bSize: 0x01, bType: Local, bTag: Usage
0x22 ,//Usage(34)
0xB1 ,//bSize: 0x01, bType: Main, bTag: Feature
0x03 ,//Feature(Constant, Variable, Absolute, No Wrap, Linear, Preferred State, No Null Position, Non

VolatileBit Field)
0x95 ,//bSize: 0x01, bType: Global, bTag: Report Count
0x03 ,//Report Count(0x3)
0x09 ,//bSize: 0x01, bType: Local, bTag: Usage
0x24 ,//Usage(36)
0xB1 ,//bSize: 0x01, bType: Main, bTag: Feature
0x03 ,//Feature(Constant, Variable, Absolute, No Wrap, Linear, Preferred State, No Null Position, Non

VolatileBit Field)
0xC0 ,//bSize: 0x00, bType: Main, bTag: End Collection

};

Change to HID Keyboard Lab

• In main change buffer size:

113

/* USER CODE BEGIN 2 */
buffer[0]=1;//reportID
buffer[1]=0;//modifier
buffer[2]=0;//OEM
buffer[3]=0x4E;//keycode data - PgDwn
buffer[4]=0;//keycode data
buffer[5]=0;//keycode data
buffer[6]=0;//keycode data
buffer[7]=0;//keycode data

/* USER CODE END 2 */
/* USER CODE BEGIN 3 */
/* Infinite loop */
while (1)
{
if(HAL_GPIO_ReadPin(GPIOA,GPIO_PIN_0)==GPIO_PIN_SET)
{
buffer[3]=0x4E;//keycode data - PgDwn press
USBD_HID_SendReport(&hUsbDeviceHS,buffer,8);
HAL_Delay(100);
buffer[3]=0x0;//keycode data - PgDwn release
USBD_HID_SendReport(&hUsbDeviceHS,buffer,8);
HAL_Delay(100);

}
}

/* USER CODE BEGIN PFP */
uint8_t buffer[8];
/* USER CODE END PFP */

USB DFU Device lab

USB DFU Device lab

• Create project in CubeMX

• Menu > File > New Project

• Select STM32F4 > STM32F429/439 > LQFP144 > STM32F439ZITx

• Select USB HS OTG internal PHY(FS)

• Select HSE clock

• (HSI cannot be used and STM32F4 have no clock synchronization)

• Select HID class in MiddleWares

115

USB DFU Device lab

• In Configuration tab select USB_HS in Connectivity

• Disable option use internal DMA

• Button OK

116

USB DFU Device lab

• In Configuration tab select USB_DEVICE in Middleware's

• Enable user string descriptor support

• Button OK

117

USB DFU Device lab

• Now we set the project details for generation

• Menu > Project > Project Settings

• Set the project name

• Project location

• Type of toolchain

• Now we can Generate Code

• Menu > Project > Generate Code

• If you have KEIL change

HEAP size in startup file

118

USB DFU Device lab

• CubeMX create for us file usbd_dfu.c

• This file handling reading and writing

into memory

• MEM_If_Init_HS

• Initialize programing, called on programing

start

• MEM_If_DeInit_HS

• Deinitialize programing, called on

programing end

• MEM_If_Erase_HS

• Erase selected part of memory

• MEM_If_Write_HS

• Write into selected memory

• MEM_If_Read_HS

• Read from selected memory

• MEM_If_GetStatus_HS

• Return state of programing

• Busy or ready

119

USB DFU Device lab

• We need to modify the usbd_dfu_it.c file

• We ned to change the string description of memory:

• Now the DFU tool will be able recognize that we can program RAM memory

on address 0x20020000 and size of this memory is 16kB

120

__ALIGN_BEGIN USBD_DFU_MediaTypeDef USBD_DFU_fops_HS __ALIGN_END =
{

(uint8_t *) "@Internal Flash /0x20020000/1*016Kg",
MEM_If_Init_HS,
MEM_If_DeInit_HS,
MEM_If_Erase_HS,
MEM_If_Write_HS,
MEM_If_Read_HS,
MEM_If_GetStatus_HS,

};

USB DFU Device lab

• MEM_If_Init_HS and MEM_If_DeInit_HS function can be empty because we

want program RAM which it to necessary to lock or unlock

121

uint16_t MEM_If_Init_HS(void)
{

/* USER CODE BEGIN 7 */
return (USBD_OK);
/* USER CODE END 7 */

}

uint16_t MEM_If_DeInit_HS(void)
{

/* USER CODE BEGIN 8 */
return (USBD_OK);
/* USER CODE END 8 */

}

USB DFU Device lab

• MEM_If_Erase_HS function simply set our RAM memory space to zero

122

uint16_t MEM_If_Erase_HS(uint32_t Add)
{

/* USER CODE BEGIN 9 */
uint32_t i;
for(i=0;i<0x3FFF;i=i+4){

(uint32_t)(0x20020000+i)=0;
}
return (USBD_OK);
/* USER CODE END 9 */

}

USB DFU Device lab

• MEM_If_Write_HS program the source buffer to destination buffer

123

uint16_t MEM_If_Write_HS(uint8_t *src, uint8_t *dest, uint32_t Len)
{

/* USER CODE BEGIN 10 */
uint32_t i = 0;
for(i = 0; i < Len; i+=4)
{

(uint32_t)(dest+i)=*(uint32_t*)(src+i);
/* Check the written value */
if(*(uint32_t *)(src + i) != *(uint32_t*)(dest+i))
{

return USBD_FAIL;
}

}
return (USBD_OK);
/* USER CODE END 10 */

}

USB DFU Device lab

• MEM_If_Read_HS read data from source address and copy it into destination

address

124

uint8_t *MEM_If_Read_HS (uint8_t *src, uint8_t *dest, uint32_t Len)
{

/* Return a valid address to avoid HardFault */
/* USER CODE BEGIN 11 */
uint32_t i = 0;
uint8_t *psrc = src;

for(i = 0; i < Len; i++)
{

dest[i] = *psrc++;
}
/* Return a valid address to avoid HardFault */
return (uint8_t*)(dest);
/* USER CODE END 11 */

}

USB DFU Device lab

• MEM_If_GetStatus_HS read information how long take programing and

erasing

125

uint16_t MEM_If_GetStatus_HS (uint32_t Add, uint8_t Cmd, uint8_t *buffer)
{

/* USER CODE BEGIN 12 */
#define MEMORY_ERASE_TIME (uint16_t)50
#define MEMORY_PROGRAM_TIME (uint16_t)50

switch (Cmd)
{
case DFU_MEDIA_PROGRAM:

buffer[1] = (uint8_t)MEMORY_PROGRAM_TIME;
buffer[2] = (uint8_t)(MEMORY_PROGRAM_TIME << 8);
buffer[3] = 0;
break;

case DFU_MEDIA_ERASE:
default:

buffer[1] = (uint8_t)MEMORY_ERASE_TIME;
buffer[2] = (uint8_t)(MEMORY_ERASE_TIME << 8);
buffer[3] = 0;
break;

}
return (USBD_OK);
/* USER CODE END 12 */

}

USB DFU Device lab

• We can use DfuSe Demo to try program the selected memory

126

USB DFU Device lab

• We can use DfuSe Demo to try program the selected memory

127

